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8.1  Introduction

Innovative biologic therapies continue to evolve for 
the treatment of orthopedic injuries. Platelet- rich 
plasma (PRP) and stem cells are at the forefront of 
these innovations designed to enhance the repair of 
tissues with high healing potential or augment the 
repair of tissues with limited healing potential and 
vascularity such as tendons, ligaments, and carti-
lage. The multipotency of these cells and their abil-
ity to modulate cellular signaling pathways provide 
promising therapeutic options, where traditional 
conservative or operative therapies have failed to 
achieve success. Basic science research has paved 
the way and affirmed proof of concept for utilizing 
these compounds as inflammatory regulators and 
biologic scaffolds for cellular maturation. But, ini-
tial clinical results, limited in number and power, 
have not been as convincing. Large-scale clinical 
trials with close follow-up are needed to clarify 
indications, dosing, cellular composition, safety, 
and overall efficacy.

8.1.1  Platelet-Rich Plasma

Platelet-rich plasma (PRP) is a supraphysiologic 
collection of platelets derived from centrifuged 
autologous blood that contains a heterogeneous 
milieu of growth factors, interleukins, and cyto-
kines important for cell proliferation, differentia-
tion, neovascularization, and signaling [1, 2]. Most 
notably, insulin-like growth factor (IGF), platelet-
derived growth factor (PDGF), vascular endothe-
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lial growth factor (VEGF), fibroblast growth factor 
(FGF), and transforming growth factor (TGF) all 
exist in differing concentrations within PRP [3]. 
These aforementioned growth factors have proven 
to be effective in maintaining cartilage integrity, 
increasing cell proliferation, promoting chondro-
cyte differentiation, and inducing angiogenesis [4]. 
Furthermore, the small molecule contents of PRP 
assist in recruiting mesenchymal stem cells and 
fibroblasts to the injury site [5]. Platelet-rich plasma 
is typically harvested from a peripheral blood draw, 
centrifuged down to separate components, and then 
extracted from the remaining fluid layers (Fig. 8.1).

Levels of leukocytes within PRP may positively 
or negatively affect the repair process [6]. The 
greater concentration of monocytes and neutrophils 
in “leukocyte-rich” PRP has been  associated with 
increased levels of interleukin-1 and tumor necrosis 
factor-alpha, both of which are inflammatory cyto-
kines. It is important to classify the leukocyte con-
tent of PRP because not all preparations are created 
equal. Depending on timing of collection and prep-
aration method, leukocyte content varies signifi-
cantly even within a single subject [7]. Clinical 
studies have demonstrated the advantage of “leuko-
cyte poor” PRP compared to “leukocyte-rich” PRP 
for tendon healing and the treatment of osteoarthri-
tis [6, 8]. Overall, the ideal concentrations of the 
numerous growth factors, cytokines, and interleu-
kins within PRP have yet to be determined.

8.1.2  Mesenchymal Stem Cells

Mesenchymal stem cells (MSC) were first 
described as a lineage of adult stem cells that have 
multipotent potential to differentiate into bone, 
cartilage, tendon, ligament, muscle, or other forms 
of connective tissue based on local environmental 
signaling and genetic potential [9, 10]. These stem 
cells differ from embryonic stem cells in that they 
are not pluripotent and cannot undergo transfor-
mation from one germ cell layer to another. 
Minimal criteria defined by the International 
Society for Cellular Therapy dictates that a MSC 
must (1) be plastic adherent; (2) express CD105, 
CD73, and CD90 while lacking CD45, CD34, 
CD14 or CD11b, CD79 alpha or CD19, and 
HLA-DR surface molecules; and (3) differentiate 
into osteoblasts, adipocytes, and chondroblasts 
in vitro [11]. Adult MSCs are typically harvested 
in one of two ways. The most common source 
with the highest yield is iliac crest bone marrow 
aspirate [12]. Harvest site pain and possibility for 
infection are potential complications. More 
recently, adipose-derived MSCs from liposuction 
tissue have been described as an alternative [13]. 
Furthermore, advancements in arthroscopic proce-
dures of the shoulder and knee now allow for MSC 
harvest from muscle, tendon, ligaments, synovia, 
and bursa [14]. But, the exact cellular characteris-
tics, differentiation potential, and variables with 

Fig. 8.1 Clinical 
images depicting the 
progression from 
peripheral blood draw to 
centrifuged specimen 
resulting in the extracted 
plasma product to be 
used for treatment. 
(From Left to Right) 
Peripheral blood draw. 
Centrifuged specimen. 
Extracted Plasma 
Product. Acknowledge 
Arthrex, The Double 
Syringe Autologous 
Conditioned Plasma 
(ACP) System
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regard to preparation of the aforementioned tis-
sues limit clinical application without further 
investigation and randomized trials.

8.2  Application of PRP 
and Mesenchymal Stem Cells

There is a great deal of preclinical and clinical 
research focus concerning different techniques for 
delivery and location of delivery to optimize treat-
ment protocols for various musculoskeletal condi-
tions. The aim of many of these studies has 
focused on the treatment of rotator cuff pathology 
because it provides an excellent model to study 
the efficacy of biologics given the limited blood 
supply, intra-articular location of the rotator cuff, 
and tension often required to repair the tendon 
back down to the footprint. As such, augmentation 
of rotator cuff repairs with patches has evolved as 
a treatment option with improved clinical out-
comes compared to non-augmented repairs [15, 
16]. Patches act as scaffolds providing the struc-
tural framework for delivery of stem cells, matrix 
proteins, and growth factors. Current constructs 
are degradable and nondegradable, based on xeno-
geneic or allogeneic extracellular matrix (ECM).

At the current time, the most efficacious patch 
strategy and long-term safety profile have yet to be 
determined. Nondegradable scaffolds provide per-
manent mechanical support for healing; however, 
tissue compatibility can be of concern [17]. Material 
options include polycarbonate polyurethane, 
polytetrafluoroethylene, and polyester. To promote 
tissue ingrowth and incorporation with native tis-
sue, these polymers are typically manufactured as a 
mesh-like material. Loss of mechanical integrity 
over time, chronic inflammation, and risk of infec-
tion must be considered despite favorable short-
term outcomes in rotator cuff augmentation [18, 
19]. ECM-based scaffolds, in contrast, provide 
temporary mechanical support to facilitate the heal-
ing response. These collagen- based constructs are 
extracted from porcine intestinal mucosa, porcine 
dermis, human fascia, or human dermis and are 
FDA approved and commercially available [17]. 
Concerns revolve around poor suture retention and 
limitations in mechanical properties in vivo, despite 
favorable results in animal models [20–22]. In 
addition, trace DNA and cellular content may lead 

to disease transmission and immune rejection [23]. 
Degradable synthetic scaffolds are also in develop-
ment. These constructs also provide transient sup-
port for biologics, are less costly than ECM- based 
scaffolds, and carry no risk of disease transmission 
[24]. These scaffolds are derived from polyesters 
including poly-l-lactic acid, poly lactic-co-glycolic 
acid, polycaprolactone, and polydioxanone, which 
can be manufactured into sheets or patterned simi-
lar to collagen fibrils [25, 26]. Persistent degrada-
tion products and the hydrophobic nature of these 
materials impeding cell seeding have limited suc-
cess during clinical application [25].

Clinical data supporting use for rotator cuff 
augmentation in humans is limited and industry- 
supported studies must be interpreted accord-
ingly. Badhe et al. have highlighted significant 
functional improvements after augmented rotator 
cuff repair [15]. This prospective case series of 
10 patients evaluated the clinical, ultrasound, and 
magnetic resonance imaging outcome 4.5 years 
after treatment of massive rotator cuff tears with 
porcine dermal collagen tendon augmentation 
grafting. Average constant scores improved from 
41 preoperatively to 62 at final follow-up while 
pain and range of motion were significantly 
improved following surgery. Average graft 
patency on MRI was 80% at the final time point 
[15]. In contrast, Soler et al. demonstrated recur-
rent rotator cuff tear in all patients treated with 
porcine dermal collagen augmentation for mas-
sive tears. In their small cases series, graft failure 
was noted in all patients 3–6 months after repair 
[27]. Similarly, Iannotti et al. recommended 
against using porcine intestinal submucosa for 
augmentation of large and massive rotator cuff 
tears. In their randomized controlled trial of 30 
patients, postoperative functional scores and rate 
of tendon-healing were not improved compared 
to tears repaired without augmentation [28].

Massive and irreparable rotator cuff tears are 
challenging because of the nature of the injured 
tissue and the inability to directly repair the ten-
don. New surgical techniques more effectively 
manage these injuries but improvements can still 
be made [29]. Scaffolds may play an important 
role in the treatment of these tears in the future. 
Despite mixed clinical results in the current 
 literature, there is still concern over the potential 
adverse effects of synthetic breakdown products 
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[30]. Toxicities vary between polymers and data 
related to the shoulder at this time do not exist. 
Future studies aim to compare commercially avail-
able products in the long term in order to elucidate 
the true effect of breakdown products in humans.

8.3  Clinical Use of Platelet-Rich 
Plasma and Stem Cells

PRP and MSCs are widely used in both the opera-
tive and conservative treatment of soft tissue and 
cartilage pathology in orthopedic medicine. There 
is a growing body of literature detailing the basic 
science and cellular biology of PRPs and MSCs 
but the transition to clinical application has not 
been well defined. Multiple high-level studies 
evaluating the efficacy and recommendations for 
the clinical use of PRP and MSCs demonstrate 
polarized results with respect to patient functional 
outcomes, pain relief, and biologic regenerative 
augmentation. But, the current body of research 
does consistently demonstrate the safety profile 
and minimal side effects. PRP and MSCs have 
experienced the greatest utilization in the treat-
ment of athletic injuries in sports medicine.

8.3.1  Treatment of Soft Tissue 
Injuries: Platelet-Rich Plasma

The possible indications for PRP as a therapeutic 
option for treating soft tissue injuries continue to 
expand. Injuries to the rotator cuff, ACL, menis-
cus, patellar tendon, Achilles tendon, and radial 
and ulnar epicondylitis are the most frequently 
documented applications of PRP in sports medi-
cine. Less reported uses in sports medicine 
include the management of hamstring and turf- 
toe injuries [31, 32].

8.3.1.1  Rotator Cuff
PRP promotes healing on a cellular level in rotator 
cuff tissue by inhibiting the inflammatory response, 
protecting against oxidative stress that could lead 
to cellular apoptosis, and stimulating regenerative 
growth factor release leading to angiogenesis and 
tendon repair [33–35]. Clinically, PRP has been 
used in the rotator cuff as a nonoperative treatment 

modality and as an augmentation during operative 
management.

PRP has been used primarily as a subacromial 
injection in conservative management of rotator 
cuff pathology. Randomized controlled studies 
comparing PRP with placebo or corticosteroid 
injection show early improvement in pain relief 
and functional outcome scores that did not persist 
beyond 6-month follow-up [36, 37]. PRP injec-
tion may be of use in patients where corticoste-
roid injections have failed to provide pain relief.

Arthroscopic rotator cuff repair demonstrates 
good outcomes with smaller and more acute pat-
terns. In massive rotator cuff tears known to have a 
high rate of failure of arthroscopic repair or those 
that exhibit limited healing potential, PRP has been 
employed as an augment to surgical intervention in 
an effort to promote soft tissue healing and improve 
patient outcomes. But, results from multiple Level 
1 trials show limited effect on tissue healing, retear 
rates, and tear propagation with the addition of 
PRP to arthroscopic repair of rotator cuff injuries 
[38–47]. Inhomogeneous dosing, concentration, 
content, and site of application of PRP combined 
with lack of long-term follow-up limit the clinical 
applications of these studies. A recently performed 
meta-analysis did not show any differences in over-
all gain in outcome scores or retear rates between 
patients treated with and without PRP supplemen-
tation during arthroscopic rotator cuff repair [48].

8.3.1.2  ACL
In basic science and animal models, PRP stimu-
lates release of growth factors that promote 
angiogenesis within the graft, graft maturation 
and remodeling, and ACL graft incorporation at 
the graft-bone interface [49–53].

There are no studies that have shown differ-
ences in patient reported outcomes, activity level, 
or complications after perioperative PRP admin-
istration regardless of graft type. Graft-bone 
interface healing and graft tunnel widening were 
not significantly different between patients that 
received supplemental PRP at the time of ACL 
reconstruction versus those who did not. One 
systematic review reported a possible beneficial 
effect on graft maturation and remodeling of up 
to 20–30% on average, but there was substantial 
variability between studies [54]. The most bene-
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ficial effect of PRP with respect to ACL recon-
struction is seen with application at the harvest 
site of a patellar tendon graft. Gapping of the 
patellar tendon harvest site was significantly 
lower, tissue regeneration was significantly 
higher, and patient outcome scores were signifi-
cantly higher with PRP administration at the har-
vest site of a bone-tendon-bone graft [55–57].

8.3.1.3  Tendinopathy
Tendinopathy incorporates a range of injuries 
referring to a chronic and progressive degenera-
tion of tendinous tissue marked by loss of normal 
tissue architecture, microtrauma, poor healing 
response without evidence of acute inflamma-
tion, and mucoid, lipoid, myxomatous, or hyaline 
degeneration [58]. Clinical presentations vary 
from asymptomatic patients to debilitating pain 
and disability that can lead to prolonged absences 
from athletic participation and competition. 
Basic science research suggests that PRP directly 

promotes tendon stem cell differentiation from 
irregularly shaped and disorganized cells 
(Fig. 8.2a) into more organized and elongated 
cells (Fig. 8.2b, C) that express less nucleostemin 
consistent with mature tenocytes (Fig. 8.2d–f). 
Furthermore, these cells were capable of further 
tenocyte proliferation and collagen deposition 
(Fig. 8.3) [59]. Clinical trials have studied the 
effects of PRP injection as a primary treatment or 
augmentation of current therapies for patellar 
tendinopathy, Achilles tendinosis, and lateral epi-
condylitis [60].

Patellar Tendon
Patellar tendinopathy affects athletes across a wide 
array of sports due to the high extension forces 
exerted on the knee during jumping, running, kick-
ing, and cutting. Current first-line therapies for 
treating patellar tendinopathy are conservative in 
nature. More recently, PRP is being utilized in 
patients that have failed traditional conservative 
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Fig. 8.2 The effect of platelet-rich plasma-clot releasate 
(PRCR) treatment on tendon stem/progenitor cells 
(TSCs). (a) TSCs in culture medium consisting of 
Dulbecco’s Modified Eagle Medium supplemented with 
10% fetal bovine serum (Control); (b) TSCs in culture 
medium with addition of 2% PRCR (2%PRCR); and (c) 
TSCs in culture medium with addition of 10% PRCR 
(10%PRCR). As seen, with increasing PRCR dosage, 
TSCs changed from an irregular shape to a well-spread 
and highly elongated shape. The cell size also markedly 

increased. (d–f) Expression of nucleostemin by TSCs in 
control culture, with 2% PRCR and 10% PRCR treat-
ments, respectively. Inset in (d) shows an enlarged view of 
expressed nucleostemin in pink (arrow). With increasing 
PRCR dosage, fewer cells expressed nucleostemin, indi-
cating that TSCs had undergone differentiation. 
Reproduced with permission of Zhang, J. & Wang, J. H. 
2010. Platelet-rich plasma releasate promotes differentia-
tion of tendon stem cells into active tenocytes. Am J 
Sports Med, 38, 2477-86
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measures in an effort to dampen inflammation, 
alleviate pain, and instigate tendon regeneration 
and repair. A double- blind randomized clinical 
trial comparing eccentric strengthening exercises 
in combination with PRP or dry needling found an 
early improvement in clinical outcomes and pain 
relief with PRP injection that dissipated beyond 12 
weeks [61]. A systematic review of eleven studies 
reported the beneficial effects of PRP injection for 
treating patellar tendinopathy to be inconclusive 
and inconsistent in comparative studies [62]. 
Overall, adverse outcomes or complications after 
PRP injection are rare [63] but the superiority of 
PRP injection for treating patellar tendinopathy 
has yet to be demonstrated in clinical trials.

Achilles Tendon
Achilles tendinosis is a chronic mucoid degen-
eration of the Achilles tendon most often due to 
overuse and repetitive injury. The abnormal cel-
lular architecture and relatively poor vascular-
ity greatly predispose affected individuals to 
acute tendon rupture. PRP injection is thought 
to promote tissue remodeling and angiogenesis 

in the degenerated Achilles tendon. But, in a 
double- blind randomized controlled trial of 54 
patients with 1-year follow-up, no difference 
was found in functional outcome scores, pain 
relief, or neovascularization of tendon tissue 
with PRP compared to placebo injection with 
saline [64, 65]. Even after acute tendon rupture, 
PRP administration at the time of surgical 
repair has not been proven efficacious [66]. 
Again, the beneficial use of PRP for treating 
Achilles tendon pathology has not been verified 
in clinical trials and continues to be no more 
superior to placebo control.

Lateral Epicondylitis
Lateral epicondylitis is chronic tendinopathy of 
the common extensor tendon of the forearm, 
more specifically the extensor carpi radialis bre-
vis (ECRB) that is more pronounced in the 
fourth and fifth decades of life due to an overuse 
scenario. Consistent with other tendinopathies, 
it is hallmarked by hyaline degeneration, abnor-
mal vascularity, and tissue microtrauma without 
signs of acute inflammation. Treatment for lat-
eral epicondylitis is primarily conservative with 
approximately 95% success rate. In refractory 
cases, surgical intervention to release the ECRB 
tendon can be utilized after failure of conserva-
tive treatment. In these refractory cases, clini-
cians have attempted treatment with PRP or 
autologous whole blood injections with some 
success and equivalent results between the two 
therapies after 6 weeks [67]. One multicenter, 
double-blinded, randomized controlled trial 
reported increased pain relief and diminished 
elbow tenderness at 24 weeks suggesting that 
PRP may have beneficial long-term effects for 
treating lateral epicondylitis compared to ste-
roid [68].

There is ample basic science research support-
ing the use of PRP to modulate inflammation and 
stimulate tissue healing in the laboratory. But, 
randomized controlled clinical trials have not 
demonstrated significant results to justify regular 
clinical application. The optimal timing of 
administration, number of administrations, ideal 
concentrations, and leukocyte content has also 
not been delineated.
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Fig. 8.3 The effect of platelet-rich plasma-clot releasate 
(PRCR) treatment on cell proliferation. With increasing 
PRCR dosage from 0 (i.e., control culture) to 2 to 10%, 
cellular population doubling time decreased, indicating 
that PRCR treatment stimulated tendon stem/progenitor 
cells to enhance proliferation rate in a dose-dependent 
manner (*P<0.05). Reproduced with permission of 
Zhang, J. & Wang, J. H. 2010. Platelet-rich plasma releas-
ate promotes differentiation of tendon stem cells into 
active tenocytes. Am J Sports Med, 38, 2477-86
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8.3.2  Treatment of Cartilage 
Defects and Osteoarthritis: 
Platelet-Rich Plasma

Osteoarthritis and superficial articular defects 
within the joints of the lower extremity con-
tinue to debilitate both the athletic and aging 
population as there are no proven therapies for 
completely restoring cartilage and congruity. 
Focal defects sustained during injury that mea-
sure greater than 15 mm in diameter may prog-
ress to global arthritis within the joint if left 
untreated. Traditionally, microfracture has been 
performed without biologic augmentation to 
treat these small focal cartilage defects measur-
ing 2–4 cm by stimulating underlying bone 
marrow stem cells to regenerate cartilage within 
the lesion. But these mesenchymal marrow 
stem cells are unable to form physiologic hya-
line cartilage within the defect and instead 
mature primarily into fibrocartilage. Newer 
biologic agents are being investigated as a 
potential therapy to stimulate hyaline cartilage 
regeneration that exhibits mechanical proper-
ties and longevity more similar to native physi-
ology. Basic science research and animal 
studies have demonstrated promising initial 
results in the ability of PRP to upregulate chon-
drocyte proliferation, enhance chondrocyte dif-
ferentiation, promote growth factor release, and 
increase molecular signaling pathways to limit 
inflammation and create an environment for 
cartilage healing [69–72].

8.3.2.1  Focal Articular Cartilage 
Defects

Treatment of isolated focal cartilage defects in 
the lower extremity solely with PRP is not well 
described. More frequently, PRP has been uti-
lized intra-operatively as an adjunct to bone mar-
row stimulation techniques or in combination 
with bone marrow aspirates and cells. In vitro 
studies show PRP as a promising treatment and 
adjunct to traditional management of focal carti-
lage injuries due to its (1) anabolic effect on 
chondrocytes, mesenchymal stem cells, and syn-
oviocytes; (2) action as a cellular scaffold for clot 
formation and cartilage regeneration [73]. Initial 

clinical research has shown a limited ability of 
PRP to decrease pain after surgical treatment of 
focal cartilage defects of the knee and ankle [74–
80]. But, long-term follow-up and reported out-
comes including functional scores, pain, and 
mechanical and radiographic properties of the 
repaired tissue have not been completed. Of note, 
no side effects or complications from PRP admin-
istration have been reported thus confirming the 
safety profile.

8.3.2.2  Osteoarthritis
Osteoarthritis affects an ever-increasing propor-
tion of the population causing pain and debilita-
tion that leads to increased medical care costs 
and financial burden on patients and the health-
care system at large. Conservative therapies 
such as physical therapy, NSAIDs, and lubricat-
ing injections have been prescribed to help slow 
the progression of the disease and limit pain. 
PRP is being investigated as a conservative 
treatment aimed at alleviating the symptoms of 
osteoarthritis and halting disease progression or 
possibly even reversing cartilage destruction. 
Basic science studies confirm PRP’s ability to 
decrease inflammation, leading to increased 
function and better symptomatic management 
[81, 82]. High- level clinical trials comparing 
hyaluronic acid (HLA) injections, placebo 
(saline), and PRP document PRP’s ability to 
decrease pain and increase functional outcome 
scores in patients suffering from arthritis [83, 
84]. The beneficial effects of PRP are even more 
pronounced and longer lasting in younger 
patients and those suffering from more mild 
degenerative changes [85]. Systematic review of 
the published clinical trials, case reports, and 
cohort studies confirms superior results with 
intra-articular PRP injections compared to HLA 
and placebo for the treatment of osteoarthritis 
(Table 8.1) [73, 86–89]. Overall, PRP demon-
strates significant improvement in pain and 
functional outcomes. Therapy appears to be 
well tolerated without side effects or complica-
tions. More research still needs to be performed 
regarding optimal timing of PRP administra-
tion, recommended number of injections, and 
ideal PRP content.

8 Current State for Clinical Use of Stem Cells and Platelet-Rich Plasma
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Table 8.1 Summary of clinical studies of platelet-rich plasma for treatment of degenerative cartilage lesions

Level of 
evidence

Patient 
number  
(age/range) Intervention Follow-up Outcome Adverse effects References

Level IV 14 (18–87 
years)

3 L-PRP 
injections every 
4 weeks

12 m Significant and linear 
improvement in 
KOOS.Pain reduced 
after movement and at 
rest

Modest pain 
persisting for 
days

[138]

Level IV 17 (30–70 
years)

Single PRP 
injection

12 m Pain decreased, 
whereas function 
improved. MRI 
showed no worsening 
in 12 of 15 knees

Unreported [139]

Level IV 27 (18–81 
years)

3 weekly L-PRP 
injections

6 m Substantial pain 
reduction after 1st 
injection and further 
improved at 6 months. 
WOMAC improved

No [140]

Level IV 40 (33–84 
years)

3 weekly P-PRP 
injections

6 m Pain and disability 
subscores were 
significantly reduced

Transient 
sensation of hip 
heaviness

[141]

Level IV 50 (32–60 
years)

2 L-PRP 
injections every 
month

12 m IKDC and KOOS 
improved; all returned 
to previous activities

Unreported [142]

Level IV 91 (24–82 
years)

3 injections of 
double-spun 
PRP activated 
by CaCl2 every 
3 weeks

12 m, 
24 m

Pain decreased and 
knee function 
improved, especially in 
younger patients at 12 
months. The 
improvements 
decreased at 24 
months, but still better 
than the basal 
evaluation

Mild pain 
persisting for 
days

[143], 
[144]

Level IV 261 (mean 48 
years)

3 injections of 
CaCl2-activated 
P-PRP every 2 
weeks

6 m Significant differences 
in VAS, SF-36, 
WOMAC and 
Lequesne index

No [145]

Level III 30 (36–76 
years)

3 injections of 
double-spun 
PRP inactivated 
PRP or HA 
every 3 weeks

6 m Both improved in 
IKDC, WOMAC and 
Lequesne index, but 
PRP exhibited better 
scores

Pain, swelling, 
but resolved in 
days

[146]

Level III 60 (61 years 
in HA, 64 
years in PRP)

3 weekly 
injections of 
CaCl2-activated 
P-PRP or HA

5 w 33.4% patients in PRP 
group and 10% in HA 
achieved at least 40% 
pain reduction. 
Disability reduced 
more in PRP group 
than HA

Mild self- 
limiting pain 
and effusion in 
both groups

[147]

Level II 120 (19–77 
years)

3 weekly L-PRP 
or HA injections

6 m Better results in 
WOMAC and NRS in 
PRP than HA

Temporary mild 
worsening of 
pain

[148]

(continued)
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Table 8.1 (continued)

Level of 
evidence

Patient 
number  
(age/range) Intervention Follow-up Outcome Adverse effects References

Level II 150 (26–81 
years)

3 injections 
double-spun 
PRP or HA 
every 2 weeks

6 m Higher IKDC but 
lower VAS pain scores 
than HA, especially in 
younger patients

No [84]

Level II 32 (18–60 
years)

3 injections of 
CaCl2-activated 
P-PRP or HA 
every 2 weeks

7 m Higher AOFAS but 
lower VAS pain scores 
than HA

Mild pain, but 
self-resolved

[149]

Level I 78 (33–80 
years)

Single or twice 
leukocyte- 
filtered PRP 
injection, or 
single saline 
injection

6 m WOMAC improved 
after PRP injection, 
whereas worsened after 
saline infiltration

Self-resolved 
nausea and 
dizziness

[150]

Level I 120 (31–90 
years)

4 weekly 
injections of 
inactivated 
P-PRP or HA

6 m Significantly better 
clinical outcome and 
lower WOMAC scores 
than HA

None observed [83]

Level I 176 (41–74 
years)

3 weekly 
injections of 
CaCl2-activated 
P-PRP or HA

6 m 14.1% more patients 
reduced pain at least 
50% in PRP group, 
with a significant 
difference

Mild, evenly in 
2 groups

[151]

Level I 96 (50–84 
years)

3 injections of 
CaCl2-activated 
P-PRP every 2 
weeks, or single 
HA injection

48 w Significantly more 
efficient in reducing 
pain, stiffness and 
improving physical 
function than HA

Mild, evenly in 
2 groups

[152]

Level I 109 (18–80 
years)

3 weekly 
injections of 
double-spun 
PRP releasate 
after freezing or 
thawing and HA

12 m No significant 
difference in all scores. 
Only a trend favoring 
PRP in patients with 
early OA

Mild pain and 
effusion

[153]

Reproduced with permission of Xie, X., Zhang, C. & Tuan, R. S. 2014. Biology of platelet-rich plasma and its clinical 
application in cartilage repair. Arthritis Res Ther, 16, 204
AOFAS American Orthopaedic Foot and Ankle Society, HA hyaluronic acid, IKDC International Knee Documentation 
Committee; Knee injury and Osteoarthritis Outcome Score, L-PRP leukocyte- and platelet-rich plasma, m months, MRI 
magnetic resonance imaging, NRS Numeric Scale, P-PRP pure platelet-rich plasma, PRP platelet-rich plasma, SF short 
form, VAS visual analogue scale, w weeks, WOMAC Western Ontario and McMaster Universities Osteoarthritis Index

8.3.3  Treatment of Soft Tissue 
Injuries: Mesenchymal Stem 
Cells

Human MSCs have been manipulated to differ-
entiate into a tenogenic lineage and produce 
tendon and other soft tissues when exposed to 

the appropriate stimuli in culture [90]. The plu-
ripotent potential of MSCs to repair damaged 
soft tissues by regenerating site-specific tissue 
based on local environmental exposure, 
mechanical loading, and cellular signaling 
makes them a strong candidate for biologic 
therapy.
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8.3.3.1  Rotator Cuff
Research based on animal models comprises the 
majority of studies reporting on the use of MSCs 
for rotator cuff healing. Few clinical trials have 
been published and no Level I evidence exists 
examining the effects of MSCs on rotator cuff 
healing or repair augmentation. In a rabbit model, 
the application of MSCs to surgically created 
infraspinatus tears increased regeneration of 
more physiologic type I collagen fibers as 
opposed to type III collagen in the control and 
non-MSC groups. Increased fibrocartilage orga-
nization, Sharpey’s fiber reconstitution, and 
deposition of type I collagen at the insertion of 
the infraspinatus tendons was also noted. These 
factors also coincided with higher mechanical 
strength of the regenerated rotator cuff tendon 
[91, 92]. Transduction of MSCs with certain 
additional growth or transcription factors, such as 
scleraxis and membrane type 1 matrix metallo-
proteinase, improves upon the ability of MSCs to 
augment the formation of fibrocartilage and 
increase mechanical properties of rotator cuff 
tendon tears at the tendon-bone interface [93, 
94]. One clinical study reporting functional and 
radiographic outcomes of rotator cuff repair com-
bined with application of MSCs has shown that 
MSCs are indeed safe but the true beneficial ther-
apeutic effect remains to be clarified [95]. But 
this study was limited by lack of a control group 
for comparison. A case-control study reported 
that adjunctive injection of MSCs at the time of 
rotator cuff repair enhanced the healing rate and 
improved the quality of the repaired surface as 
determined by ultrasound and MRI at 10-year 
follow-up [96]. Preclinical studies regarding the 
role of MSCs in treating rotator cuff tendon 
injury is promising but the paucity of randomized 
controlled trials limits clinical indications for 
use.

8.3.3.2  Tendinopathy
Excessive mechanical stimuli during tendon 
overuse have been proposed as the leading mech-
anism of tendinopathy because it induces the pro-
duction of cytokines, inflammatory 
prostaglandins, and matrix metalloproteinases as 
well as tendon cell apoptosis and chondroid 

metaplasia [58]. Equine veterinary literature 
serves as a well-established source for basic sci-
ence and preclinical studies reporting efficacy of 
MSC application in tendinopathy [97]. Although 
autologous MSC treatment in thoroughbred race-
horses for flexor digitorum superficialis tendi-
nopathy has shown success, the successful 
translation to human clinical settings for the 
treatment of common tendinopathies, such as in 
the patellar tendon and Achilles tendon, has not 
been demonstrated.

8.3.3.3  Meniscus
Meniscal tears continue to plague both clinicians 
and patients alike due to a limited healing poten-
tial stemming from tenuous vascularity and nutri-
ent supply. Inventive biomimetic materials 
demonstrate comparable mechanical properties 
to native meniscal tissue when combined with 
standard surgical repair techniques for meniscal 
tears [98]. The possibility of combining these 
constructs with stem cells could theoretically 
improve durability and integration of these scaf-
folds. MSCs offer a hopeful intervention for tis-
sue healing and regeneration in the setting of 
acute tears and chronic pathology after failed 
conservative treatment. Preclinical research 
examining the effects of bone marrow-derived 
MSCs on meniscal injury in a rabbit model 
showed a higher proportion of healing with 
meniscus-like fibrocartilage as opposed to scarce 
fibrous tissue present in the control group [99]. 
More randomized controlled clinical trials are 
needed before widespread utilization can be 
recommended.

8.3.4  Treatment of Cartilage 
Defects and Osteoarthritis: 
Mesenchymal Stem Cells

Biologic therapy continues to evolve beyond the 
first marrow stimulation techniques to treat artic-
ular cartilage injuries and degeneration. But, 
completely effective and definitive restorative 
therapies for articular cartilage still elude physi-
cians. Mesenchymal stem cells exhibit plausible 
possibilities to fill this therapeutic gap in the 
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management of both focal cartilage defects and 
global osteoarthritis.

8.3.4.1  Focal Articular Cartilage 
Defects

Microfracture remains as a standard surgical pro-
cedure for the treatment of focal articular carti-
lage defects by promoting the release of 
subchondral bone marrow stem cells into the 
lesion of interest. But, this reparative tissue histo-
logically mirrors fibrocartilage as opposed to 
physiologic hyaline cartilage across joint sur-
faces. Updated MSC-based treatments beyond 
microfracture for focal cartilage defects gain 
interest as the potential for restoring native carti-
lage is favorable in preclinical studies. Animal 
models validate proof of concept for the applica-
tion of MSCs for treating focal cartilage defects. 
In rabbit, porcine, and equine studies, not only 
was reparative tissue of MSC-treated defects 
more histologically similar to native articular car-
tilage, but some specimens demonstrated com-
plete subchondral bony regeneration in larger 
defects [100–104]. Human application to the 
knee, patellofemoral joint, and talus prove to be 
safe and effective in terms of improving histo-
logic quality of repaired tissues, subjective 
assessment of cartilage repair, and patient out-
come scores [76, 77, 104–115]. Cultured MSCs 
and unmodified aspirate, used alone or in con-
junction with other cartilage procedures (micro-
fracture, autologous chondrocyte implantation, 
osteochondral autograft transfer) have emerged 
as a therapy with good chondrogenic and osteo-
genic potential [116]. As with most contempo-
rary biologic agents, randomized controlled 
human clinical trials are needed to substantiate 
widespread usage.

8.3.4.2  Osteoarthritis
Inherently, focal cartilage defects entail a local-
ized injury that can be addressed surgically with 
focused treatment within the lesion. Generalized 
joint osteoarthritis is challenging because the car-
tilage loss is frequently too excessive to address 
without arthroplasty. With the advent of inject-
able therapies, such as viscosupplementation, to 
help postpone surgery, research has attempted to 

evaluate the efficacy of injectable MSCs to 
address cartilage damage. Injectable MSCs for 
the treatment of cartilage defects in a porcine 
model demonstrated improved histologic and 
morphologic characteristics of the reparative tis-
sue compared to saline and hyaluronic acid [117]. 
In a sample of 18 patients, injected MSCs for the 
treatment of knee osteoarthritis resulted in no 
complications, decreased pain, increased func-
tional outcome scores, decreased lesion size, 
increased articular cartilage volume within the 
defect, and more hyaline-like regeneration on 
histologic examination [118]. Similar results 
have been reported in several other case series 
[119–122]. Even more encouraging is that these 
results have been confirmed at 24-month follow-
 up during second-look arthroscopy [123]. 
Although these studies report promising data, 
more research must be conducted to determine 
ideal cellular composition and patient-specific 
algorithms for treatment of osteoarthritis with 
MSCs.

8.4  Regulatory Challenges

There are numerous regulatory hurdles that chal-
lenge the widespread implementation and adop-
tion of new advancements in the field of biologics 
[124]. In the United States, the U.S. Food and 
Drug Administration (FDA) is the regulatory 
body that oversees implementation of new medi-
cal technologies, including MSCs and PRP [124–
127]. In Europe, the European Union (EU) and 
the European Medicines Agency (EMA), in addi-
tion to individual national agencies, oversee 
 regulations governing biologic therapeutics [128, 
129]. Medical progress dictates that the health-
care community strikes a delicate balance 
between the risk of stringent regulations that may 
stifle innovation and a lack of regulations that 
may jeopardize patient safety. However, it seems 
that the current state of stem cell and PRP regula-
tion is inclined towards regulation [130].

In Europe, all stem cell-derived products and 
biologics can be subject to a dizzying array of 
regulations, including guidelines on marketing, 
production, and good clinical practice. 
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Furthermore, each nation must approve these 
therapies and the policies and procedures are not 
homogeneous across countries [128]. In fact, 
European Commission survey results indicated 
that clinicians and researchers perceived the 
European regulatory environment as extremely 
burdensome [128]. Academic institutions with-
out the support of large pharmaceutical compa-
nies often have difficulty moving a potential 
biologic therapy through the numerous phases of 
regulatory approval. Much of the language in the 
varying regulations is ambiguous, and new prod-
uct marketing authorizations have been some-
what stagnant. This has led to a call for more 
streamlined pathways to allow a more rapid and 
robust movement from the laboratory to the 
clinic.

Similarly, the US regulatory environment is 
complex. It is telling that large corporations have 
shied from entering the healthcare field in the 
United States due to the complex regulatory envi-
ronment [131]. In terms of orthopedic therapies, 
biologic therapeutic products are divided into 
either low-risk (Section 361) or high-risk (Section 
351) categories according to the Public Health 
Service Act. Many MSCs that could potentially 
be utilized for orthopedic use must follow the 
351 pathway, subjecting them to additional 
inspection. Section 351 requires preclinical 
development including animal trials, phased clin-
ical studies, and premarket FDA review. 
Ultimately, a Biologic License Application may 
be approved after animal, Phase I, Phase II, and 
Phase III studies. Currently, stem cells that are 
cultures, allograft cells, and cells obtained from 
adipose or placental cells are restricted under 
Section 351 guidelines [130].

Therapies classified under Section 361 are not 
required to undergo preclinical development test-
ing and instead required to follow less stringent 
standards that are mostly aimed at preventing the 
spread or transmission of communicable disease. 
Examples of therapies that are currently regu-
lated under Section 361 (low-risk) are bone mar-
row aspirate cells and PRP [130]. For therapies to 
meet criteria for the 361 pathway (low-risk, and 
therefore more easily employed in clinical prac-
tice), they must (1) require minimal manipulation 

during preparation, (2) be used homologously 
(same patient, similar site or purpose as its origi-
nal origin), (3) must not be combined with other 
products, and (4) must show a lack of systemic 
effects. Perhaps the most profound effect of this 
tiered pathway in orthopedics relates to FDA 
regulations that prevent stem cells obtained in the 
operating room from being cultured, augmented, 
or further manipulated prior to re-implantation, 
in order to fall under Section 361 guidelines. 
They also cannot be extracted from one site and 
placed into another (e.g., adipose cells into the 
knee joint). Therefore, this limits intra-operative 
use to those cells that are collected intra- 
operatively, minimally manipulated, and injected 
back into the same type of tissue.

Similarly, the amount of analysis performed 
on the cells collected intra-operatively is limited, 
as the cells cannot be removed from the operating 
room prior to re-implantation [132]. As such, the 
resulting re-injections or re-implantations are 
inconsistent and the exact concentrations and 
types of cells and biologic factors are not usually 
known [9, 124]. This is important because the 
number of stem cells harvested can be technique 
dependent, age dependent, and affects clinical 
outcomes. Clinical results are therefore variable, 
and it is unknown how different concentrations 
and combinations of cells may affect outcomes, 
resulting in an unknown dose–response curve 
[124, 130, 132]. The regulatory burden is so high 
that many researchers and clinicians have ceased 
attempts to develop new technology and instead 
focus on working within their current confines. In 
fact, there have been few major advances in 
 biologics and stem cells in musculoskeletal treat-
ment since the approval of autologous chondro-
cyte implantation (ACI) two decades ago [124].

8.5  Future Directions

Fortunately, the use of bone marrow-derived 
MSCs and PRP hold significant promise in the 
future. The key will be to perform high-quality 
clinical and laboratory studies to further eluci-
date and define the most appropriate indications 
for treatment and to further understand the mech-
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anisms by which MSCs are activated and directed 
into the desired pathway. In addition, the regula-
tory bodies that control these therapies will need 
to evolve so that fast-changing technology can be 
adopted more readily. For instance, Japan has 
created a new class of therapies termed “regen-
erative medicine products” by which new stem 
cell therapies can progress through an expedited 
approval system. South Korea and England have 
made similar changes [130].

Future research will need to determine the 
ideal method of preparation that will allow tissue- 
specific and injury-specific solutions. There is 
significant variability in the current body of lit-
erature on PRP, with limited adoption of PRP 
classification systems and poor reporting of PRP 
composition used. If determination of optimal 
PRP characteristics (growth factors, platelet con-
centration, leukocytes) is to occur, clinical stud-
ies will need to standardize the reporting of PRP 
contents so that clear and consistent comparisons 
can be made across trials. In fact, the results of 
clinical studies that do not control for platelet 
concentration and leukocyte presence should be 
interpreted with caution. Similarly, future studies 
will need to identify the ideal dosing, timing, and 
frequency of application for varying injuries, tis-
sue types, and operative procedures, and all 
should report the PRP volume, composition, and 
platelet concentration utilized [132].

Similarly, there is significant potential for 
advancement in our understanding of bone 
marrow- derived MSCs. In particular, the optimal 
tissue environment for MSC implantation needs 
to be further studied. The mechanism of action is 
poorly understood, and future research will need 
to determine whether MSCs produce their effects 
through a paracrine mechanism, immunomodula-
tion, or direct engraftment [124, 132, 133]. 
Additionally, research is being performed to 
improve recruitment of tissue-specific stem cells, 
develop serum-free media for MSC culture and 
expansion, allow identification of novel genetic 
markers and subsets of MSCs that may be spe-
cialized according to tissue types, and advance 
methods to obtain purified autograft perivascular 
MSCs. In addition to implantation of MSCs, it 
may be possible to identify factors that stimulate 

the release, recruitment, and activation of native 
stem cells [132, 134, 135]. Further unanswered 
questions include the presence of any sex-related 
differences, optimal method of administration, 
and how to minimize any immunogenicity- 
related problems such as graft-versus-host dis-
ease [136].

MSCs hold promise in the use of tendinopathy 
[60]. As ongoing and future research advances 
our understanding of tendinopathy basic science, 
the role of angiogenesis in tendon healing, and 
the link between histology and clinical findings, 
the use of MSCs will likely continue to play an 
increasing role in treatment of this common yet 
often recalcitrant pathology. Research has shown 
that areas with pathologic tendon have lower 
MSC concentrations, [133] and tendon usually 
has less healing potential than other tissues [137]. 
However, it is unknown whether this is due to a 
lower baseline MSC concentration in this patient 
population or whether it represents a depletion of 
the tissue’s supply of MSCs. Regardless, aug-
menting these injured tissue beds could poten-
tially improve the healing response. It remains to 
be seen what the optimal concentration of cells 
is, and what the optimal source of MSCs is in this 
type of setting (i.e., bone marrow-derived, 
adipose- derived, or tendon-derived) [132, 135]. 
As we further our understanding of the mecha-
nism of effect, these details should also become 
more apparent. These questions underscore the 
importance of well-designed clinical studies with 
standardized reporting of MSC composition, har-
vesting technique, culturing technique, and final 
volume that is implanted, as well as the need for 
standardized clinical outcome reporting [124]. 
Tendon-specific imaging may allow for better 
outcomes tracking in the future. Studies have 
described the use of both MRI and ultrasound to 
quantify the healing throughout various stages of 
tendinopathy. It is possible that this technology 
would allow for improved tracking and assess-
ment of tendinopathy after MSC treatment [132].

However, furthering the use of MSCs is not 
without significant challenges. For example, there 
is a relatively limited availability of MSCs avail-
able for harvest in host tissues. In most cases, they 
will need expansion prior to implantation. 
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Furthermore, the complexity of the regulatory sys-
tem provides a significant barrier to new research 
and innovation. In the future, it may be possible to 
utilize other sources of stem cells such as induced 
pluripotent cells, embryonic stem cells, or other 
recently identified adult stem cell populations.

 Conclusions

In summary, the use of PRP and MSCs in 
orthopedic surgery undoubtedly has a bright 
future. It is imperative that clinicians and sci-
entists identify barriers to success and address 
them head on. The regulatory environment 
must improve and adapt to modern science if 
innovation is to continue. This will require the 
involvement and collaboration of practitioners 
across the world in their local and national 
regulatory bodies. Research should also focus 
on the utility of adjuncts such as scaffolds, 
which may improve the efficacy of the admin-
istered stem cells [137]. Furthermore, consis-
tent reporting of the composition of biologic 
therapies used, the method of preparation and 
administration, timing, dosing, as well as the 
use of standardized protocols and collection 
and reporting of quantifiable objective and 
subjective outcomes is paramount to success 
and advancement of these potentially life- 
altering therapeutics. Similar to the develop-
ment of modern arthroscopy, the use of PRP 
and MSCs have the potential to revolutionize 
the treatment of sports medicine injuries.
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